Perseverance Rover

Flyaway

ACCESS: Above Top Secret
Senior Member
Joined
Jan 21, 2015
Messages
7,858
Reaction score
7,135
Doesn't appear to be a thread for the MAVEN mars probe so I will put this here.

NASA's Mars MAVEN spacecraft spent 3 months on the brink of disaster​

"The safe mode event was — catastrophic is too strong, but I mean, we did get close to losing the spacecraft," Curry said, calling the incident "incredibly serious" and "scary." And when the team wanted to be celebrating the end of the six-month mission extension campaign, the timing stung. "It was like getting the wind knocked out of you. On your birthday."
The spacecraft carries two of what engineers call inertial measurement units, or IMUs: one primary version, dubbed IMU-1, and an identical backup called IMU-2. Whichever IMU the spacecraft is using at any given time is responsible for keeping MAVEN in the right attitude, or orientation in space. (Attitude is crucial: functions like charging solar panels and communicating with Earth can't occur properly when a spacecraft loses attitude.)


After worrying IMU-1 issues cropped up in late 2017, the MAVEN team switched the spacecraft to its backup unit. But late last year, the team noticed that the IMU-2 unit was starting to, essentially, wear out much faster than expected. So in early February, the team returned the spacecraft to its original IMU-1 unit.


Two weeks later, on Feb. 22, the very day of MAVEN's mission extension presentation, the spacecraft suddenly couldn't seem to use either IMU to properly position itself.


"For different reasons, both of our [IMU]s started showing problems," Curry said. "When we went into safe mode, it was because one of them really crashed, basically, and then the other just was losing lifetime."
The slow ramp-up back to full operations also meant that MAVEN spent an extra month unable to serve as a relay satellite for the InSight lander and Curiosity and Perseverance rovers, the three NASA robots currently active on the Martian surface. Although other satellites also participate in this work, MAVEN bears one of the largest loads. So the spacecraft's three-month outage meant not just reduced science from MAVEN but reduced science from Mars overall.


"It's been really hard on all of the surface assets," Curry said. And in turn, the rescue was about more than MAVEN itself. "It wasn't just simply to make sure we saved our spacecraft. This was enabling a lot of data at Mars in general."
Although all-stellar mode can do the job for normal operations, it isn't precise enough to see MAVEN safely through its most delicate maneuvers, and the spacecraft still has precious little time left on its IMUs.


"We have to spend this summer and the next year or two coming up with very clever ways to stop using the IMU when we normally would," Curry said. "If we did nothing, we would not make it the next 10 years." (The recent mission extension sees the spacecraft through 2025, but NASA has said it wants to use MAVEN's relay capability during its planned Mars sample-return mission campaign, which is currently targeting delivery at Earth in 2033.)
 

Flyaway

ACCESS: Above Top Secret
Senior Member
Joined
Jan 21, 2015
Messages
7,858
Reaction score
7,135
Perseverance and its pet wheel rock.

How do you choose a rock on Mars? Sometimes you don’t— it chooses you.
For the past 4 months, Perseverance has had an unexpected traveling companion. Back on sol 341— that’s over 100 sols ago, in early February— a rock found its way into the rover’s front left wheel, and since hitching a ride, it’s been transported more than 5.3 miles (8.5 km). This rock isn’t doing any damage to the wheel, but throughout its (no doubt bumpy!) journey, it has clung on and made periodic appearances in our left Hazcam images.

 

FighterJock

ACCESS: Top Secret
Joined
Oct 29, 2007
Messages
2,434
Reaction score
1,312
Perseverance and its pet wheel rock.

How do you choose a rock on Mars? Sometimes you don’t— it chooses you.
For the past 4 months, Perseverance has had an unexpected traveling companion. Back on sol 341— that’s over 100 sols ago, in early February— a rock found its way into the rover’s front left wheel, and since hitching a ride, it’s been transported more than 5.3 miles (8.5 km). This rock isn’t doing any damage to the wheel, but throughout its (no doubt bumpy!) journey, it has clung on and made periodic appearances in our left Hazcam images.


I wonder how the rock managed to get onto the wheel in the first place? And to have been on the wheel for so long without getting flung of again is highly unusual.
 

TomcatViP

Hellcat
Joined
Feb 12, 2017
Messages
5,626
Reaction score
5,411
Caution, we don't know what kind of squirrel they have there!

Squirrel_Pittsburgh.2e16d0ba.fill-735x490.png
 

Flyaway

ACCESS: Above Top Secret
Senior Member
Joined
Jan 21, 2015
Messages
7,858
Reaction score
7,135
NASA’s Perseverance Studies the Wild Winds of Jezero Crater

The rover’s weather sensors witnessed daily whirlwinds and more while studying the Red Planet.

During its first couple hundred days in Jezero Crater, NASA’s Perseverance Mars rover saw some of the most intense dust activity ever witnessed by a mission sent to the Red Planet’s surface. Not only did the rover detect hundreds of dust-bearing whirlwinds called dust devils, Perseverance captured the first video ever recorded of wind gusts lifting a massive Martian dust cloud.

A paper recently published in Science Advances chronicles the trove of weather phenomena observed in the first 216 Martian days, or sols. The new findings enable scientists to better understand dust processes on Mars and contribute to a body of knowledge that could one day help them predict the dust storms that Mars is famous for – and that pose a threat to future robotic and human explorers.
Jezero Crater may be in one of the most active sources of dust on the planet.
Manuel de la Torre Juarez
“Every time we land in a new place on Mars, it’s an opportunity to better understand the planet’s weather,” said the paper’s lead author, Claire Newman of Aeolis Research, a research company focused on planetary atmospheres. She added there may be more exciting weather on the way: “We had a regional dust storm right on top of us in January, but we’re still in the middle of dust season, so we’re very likely to see more dust storms.”

Perseverance made these observations primarily with the rover’s cameras and a suite of sensors belonging to the Mars Environmental Dynamics Analyzer (MEDA), a science instrument led by Spain’s Centro de Astrobiología in collaboration with the Finnish Meteorological Institute and NASA’s Jet Propulsion Laboratory in Southern California. MEDA includes wind sensors, light sensors that can detect whirlwinds as they scatter sunlight around the rover, and a sky-facing camera for capturing images of dust and clouds.

“Jezero Crater may be in one of the most active sources of dust on the planet,” said Manuel de la Torre Juarez, MEDA’s deputy principal investigator at JPL. “Everything new we learn about dust will be helpful for future missions.”

Frequent Whirlwinds

The study authors found that at least four whirlwinds pass Perseverance on a typical Martian day and that more than one per hour passes by during a peak hourlong period just after noon.

The rover’s cameras also documented three occasions in which wind gusts lifted large dust clouds, something the scientists call “gust-lifting events.” The biggest of these created a massive cloud covering 1.5 square miles (4 square kilometers). The paper estimated that these wind gusts may collectively lift as much or more dust as the whirlwinds that far outnumber them.

“We think these gust-liftings are infrequent but could be responsible for a large fraction of the background dust that hovers all the time in the Martian atmosphere,” Newman said.

Why Is Jezero Different?

While wind and dust are prevalent all over Mars, what the researchers are finding seems to set Jezero apart. This greater activity may be linked to the crater being near what Newman describes as a “dust storm track” that runs north to south across the planet, often lifting dust during the dust storm season.

Newman added that the greater activity in Jezero could be due to factors such as the roughness of its surface, which can make it easier for the wind to lift dust. That could be one explanation why NASA’s InSight lander – in Elysium Planitia, about 2,145 miles (3,452 kilometers) away from Jezero Crater – is still waiting for a whirlwind to clear its dust-laden solar panels, while Perseverance has already measured nearby surface dust removal by several passing whirlwinds.

“Perseverance is nuclear-powered, but if we had solar panels instead, we probably wouldn’t have to worry about dust buildup,” Newman said. “There’s generally just more dust lifting in Jezero Crater, though average wind speeds are lower there and peak wind speeds and whirlwind activity are comparable to Elysium Planitia.”

In fact, Jezero’s dust lifting has been more intense than the team would have wanted: Sand carried in whirlwinds damaged MEDA’s two wind sensors. The team suspects the sand grains harmed the thin wiring on the wind sensors, which stick out from Perseverance’s mast. These sensors are particularly vulnerable because they must remain exposed to the wind in order to measure it correctly. Sand grains blown in the wind, and likely carried in whirlwinds, also damaged one of the Curiosity rover’s wind sensors (Curiosity’s other wind sensor was damaged by debris churned up during its landing in Gale Crater).

With Curiosity’s damage in mind, the Perseverance team provided an additional protective coating to MEDA’s wires. Yet Jezero’s weather still got the better of them. De la Torre Juarez said the team is testing software changes that should allow the wind sensors to keep working.

“We collected a lot of great science data,” de la Torre Juarez said. “The wind sensors are seriously impacted, ironically, because we got what we wanted to measure.”

More About the Mission

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

For more about Perseverance:

mars.nasa.gov/mars2020/
News Media Contact

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

 

Flyaway

ACCESS: Above Top Secret
Senior Member
Joined
Jan 21, 2015
Messages
7,858
Reaction score
7,135

NASA’s plan to get Ingenuity through the Martian winter
NASA engineers are trying to overcome colder nights and frequent dust storms.
Ingenuity, NASA’s autonomous Mars helicopter, was only meant to complete five flights. But since its history-making first flight in April 2021, the helicopter has flown 28 times, and preparation is underway for the 29th. Depending on dust levels and the schedule of the rover Perseverance, that flight could take place as soon as later this week. But now Ingenuity faces a new challenge: It’s unclear if the helicopter will survive the coming Martian winter, which begins in July.
 

FighterJock

ACCESS: Top Secret
Joined
Oct 29, 2007
Messages
2,434
Reaction score
1,312

NASA’s plan to get Ingenuity through the Martian winter
NASA engineers are trying to overcome colder nights and frequent dust storms.
Ingenuity, NASA’s autonomous Mars helicopter, was only meant to complete five flights. But since its history-making first flight in April 2021, the helicopter has flown 28 times, and preparation is underway for the 29th. Depending on dust levels and the schedule of the rover Perseverance, that flight could take place as soon as later this week. But now Ingenuity faces a new challenge: It’s unclear if the helicopter will survive the coming Martian winter, which begins in July.

Let's hope that they succeed Flyaway, I would like to see Ingenuity continue through another Martian year.
 

Flyaway

ACCESS: Above Top Secret
Senior Member
Joined
Jan 21, 2015
Messages
7,858
Reaction score
7,135

Similar threads

Top