Grumman Pre-ATF & ATF Studies

PaulMM said:
Identified as STAC, Supersonic Tactical Aircraft, late 1970s study for a supercruise strike fighter.

index.php


My dear Paul,


here is the Grumman STAC with twin tail fins;


http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840008144_1984008144.pdf
 

Attachments

  • STAC.JPG
    STAC.JPG
    48.4 KB · Views: 776
  • STAC 3-view.JPG
    STAC 3-view.JPG
    45.6 KB · Views: 855
Hadn't seen this topic when I posted the same 908-833 pics as Paul in the ATF thread... :'(

hesham said:
Here is an artist drawing to Boeing Model 908-833

I suspect a mistake from that website's author about this design's identity, which is distinctly different from the -833...
 
It's interesting to me that out of the six ATF finalists only Grumman went it alone while the five teamed up. -SP
 
As if they had a choice? What added value could they bring to a potential teaming?
 
According to NASA pictures linked by Hesham, were the flatted nozzles added for stealth reason? If so, were these the final proposal after the stealth requirement from the Air Force has been emphasized?
 
A Grumman concept model for a twin-tail ATF (probably, possibly, or maybe).
 

Attachments

  • Grumman ATF Twin-Fin.jpg
    Grumman ATF Twin-Fin.jpg
    94.6 KB · Views: 707
Is that your model or just a pic you found? I've been looking for detail on that design forever. All I've ever seen is the top views of the related designs in those early 80's comparison charts for ATF weight class that this in, along with designs from other manufacturers. I know that chart is on these forums somewhere as well.

Thanks for sharing. :)
 
Another image (that got away from me on eBay).
 

Attachments

  • G-719J Fuel Efficient Fighter  - pair.JPG
    G-719J Fuel Efficient Fighter - pair.JPG
    25.7 KB · Views: 753
Sundog said:
Is that your model or just a pic you found?

I WISH this was my model, but it's just a photo that is currently for sale on eBay, here. Unless aim9xray has already snapped it up... BTW, thank you aim9xray for identifying this Grumman concept as the G-719J.
 
I don't recall if we previously identified or documented this concept. Grumman? I apologize if this has already been identified and documented.

USAF advanced fighter with canards photo found on eBay.

Source:
http://www.ebay.com/itm/USAF-Advanced-Fighter-with-Canards-Concept-Photo/281197268350?_trksid=p2045573.m2042&_trkparms=aid%3D111000%26algo%3DREC.CURRENT%26ao%3D1%26asc%3D27%26meid%3D2658111646153818475%26pid%3D100033%26prg%3D1011%26rk%3D3%26rkt%3D4%26sd%3D121198098178%26
 

Attachments

  • 87904.jpg
    87904.jpg
    96.5 KB · Views: 385
No, it's believed to be a Grumman something-or-other pre-ATF concept.
 
It's a Grumman design. It's in the American Secret Projects Book.
 
index.php



Looks like this 1976 Grumman ADCA concept. Photo of the above model in American Secret Projects is courtesy Allyson Vought, who is a member of the forum.
 
A rather complete review of prospects for use of composite materials abroad was published in the pages of our journal in 1984,1 but recently a series of new information has appeared about foreign firms' development American firm of Grumman studied possibilities of creating a future fighter with unlimited use of composite materials under the ADCA (Advanced Design Composite Aircraft) project. The objective of the work was to study the likely cost reduction of a supersonic fighter and concomitant weight reduction with maximum possible use of composite materials in its construction. Requirements placed on the ADCA aircraft were to ensure supersonic cruising speed, high acceleration characteristics and rate of climb, lengthy combat maneuvering at altitude at Mach 0.9, and good airfield performance. Graphite-epoxy, boron-epoxy and graphite-boron-epoxy materials, which were sufficiently worked out and already used previously in individual components of Some aircraft constructions, were considered as possible composite materials for use.

The project of an aircraft with a take-off weight of 17.33 tons was chosen from several versions of a future supersonic fighter satisfying the requirements laid down; it was the cheapest and lightest (Fig. 1). Its acceleration time from Mach 0.8 to Mach 1.6 at an altitude of 10,000 m was 79 seconds. The take-off run with missiles on external mounts with an overall weight of 5.54 tons did not exceed 975 m. The landing run also was the same distance. The most difficult to fulfill was the requirement to ensure lengthy combat maneuvering of the designed fighter with a g-load of 3.8 at an altitude of 9,000 m and a speed corresponding to Mach 0.9. Considering that the design temperature of the aircraft skin in the most important flight regimes did not exceed 127[] Centigrade, the decision was made to use graphite-epoxy as the primary structural material, from which the following basic structural components were designed: multispar continuous wing, foreplane (all moving stabilizer), vertical tailplane (with honeycomb filler), semimonocoque fuselage with wing attachment to it on three load-bearing spars.

The foreign press notes that compared with a fighter of similar purpose and with similar technical flight characteristics but made of traditional metal alloys, wide use of composite materials substantially reduced the weight of basic structural components of the ADCA aircraft, including 28 percent in the wing, 22 percent in the JPRS-UFM-88-008 5 August 1988 32 Fig. 1. Drawings of general views of fighter being created under the ADC A program (dimensions in meters) fuselage, 23 percent in the foreplane and fin, and 20 percent in the power plant air intakes. Studies showed that a certain decrease in weight of the aircraft construction also can be achieved using the latest metal alloys, but in this case the proportion of weight reduction does not exceed 9 percent. In addition, American specialists assert that they managed not only to design a stronger and lighter wing meeting given specifications, but also to give it new aeroelastic properties. In particular, in flight under the effect of aerodynamic forces the wing is capable of acquiring a specific twist at a certain angle close to optimum for the given flight regime without the help of controls. In this way the wing's lift/drag ratio is kept close to optimum in different flight regimes. Wings of metal construction do not have that capability. In wings made of composite materials, however, the effect of programmed aeroelasticity is achieved with consideration of a forecasting of the pairing of "flexural-torsional" strain by appropriately selecting the placement of composite material lamina of varying number and orientation along the wingspan. Foreign specialists point out three possible methods for placing composite material lamina: rotation of longitudinal lamina, unbalance of transverse lamina and rotation of the entire placement scheme. It is believed that all of them provide the requisite nature of change in wing strain in flight, but the last two methods are not recommended for use since they simultaneously lead to a reduction in the wing's torsional rigidity and consequently to a decrease in the speed where flutter appears. Calculations showed that placement of torsion box skin lamina with a 15 degree forward rotation of the lamina in the ADCA aircraft wing provides best values of wing twist and helps the aircraft achieve high maneuver characteristics. This thesis was confirmed by appropriate wind tunnel tests. A similar effect also can be achieved in a nontwisted wing, but with the help of deflection of special control surfaces, which requires an increase in aircraft weight due to the need for installing an additional system and controls. The method of controlling structural rigidity by rotating the longitudinal composite material lamina in the process of placing them in the skin (in this case by 15 degrees backward with respect to the longitudinal axis) was used in creating the fin of the ADCA aircraft. Transverse composite material lamina (90 degrees) and crossed lamina (plus or minus 45 degrees) retained their position. As a result there was a 35 percent increase in the design flutter speed and 23 percent increase in fin strength for the most critical design case. Meanwhile in the process of designing the ADCA aircraft Grumman experts proved that the simple substitution of composite materials for metal alloys in the construction may lead in the final account only to a slight decrease (around 13 percent) in its take-off weight, which is economically unjustified with consideration of the high cost of composite materials. But if the design of such an aircraft is created [sozdavatsya] in advance with consideration of features of composite materials and they are used purposefully, then its cost in the supersonic fighter version drops by 25 percent (in 1980 prices), the cost during its service life drops by 21 percent, and the take-off weight drops by 26 percent compared with a similar aircraft made of metal.

http://www.dtic.mil/dtic/tr/fulltext/u2/a347373.pdf
 
Grumman ADCA (Advanced Design Composite Aircraft) advertisement circa 1978.

Source:
http://www.ebay.co.uk/itm/1978-Grumman-Advanced-Design-Composite-Aircraft-Ad-/121212615019?pt=LH_DefaultDomain_0&hash=item1c38d5b96b
 

Attachments

  • $_3.JPG
    $_3.JPG
    40.6 KB · Views: 2,356
This concept now identified as LOCI.

The Grumman LOCI, shown in Figure 8, is a low cost, forward-based, quick reaction, short-range interceptor powered by two augmented turbofans. The LOCI would be procured in sufficient quantities to gain parity with Warsaw Pact Air Forces in Central and Northern Europe. The LOCI mission involves a low-level subsonic dash and a supersonic intercept on-the-deck. The engine incorporates a thrust-reverser that provides short distance landing capabilities.

Source: AIAA Paper 1981-1503 Progress Toward a Long-Range Propulsion Plan, C.F. Baerst, R.C. Gunness,and S.W. Mitnik, Garrett Turbine Engine Co
 

Attachments

  • grumman_01.jpg
    grumman_01.jpg
    150.8 KB · Views: 1,795
  • LOCI.png
    LOCI.png
    36.2 KB · Views: 1,764
Again from my dear Scott's site;


http://up-ship.com/blog/?p=22945


Possibly an ATF, more likely a pre-ATF concept. Looks high performance but with little effort at stealth.If the code scribbled on it means what I think it might, it may be dated 1971. In which case this would be a bit late for the F-15 program (McD was picked in 1969), and certainly doesn’t fit the F-16 profile.
 

Attachments

  • G-1.jpg
    G-1.jpg
    123.2 KB · Views: 1,561
1976 factory concept model of the Grumman ADCA (Advanced Design Composite Aircraft).
 

Attachments

  • Grumman ADCA Model 1976.jpg
    Grumman ADCA Model 1976.jpg
    44.7 KB · Views: 1,172
Grumman pre-ATF designs from TsAGI's Tekhnicheskaya Informatsiya (No.13, 1984):
 

Attachments

  • Grumman pre-ATF.gif
    Grumman pre-ATF.gif
    354.9 KB · Views: 1,682
Anybody know what the actual Grumman entry looked like? I've seen a lot of hypotheticals but never the real deal.
 
In Skyblazer's image, when they say ATF, they mean the original mid 70's requirement, not what the ATF program became in the late 80's that became the F-22. Although, I would like to see what Grumman's submission for the 80's version of the ATF was as well. I thought it was the twin tailed canard super-cruiser design, but I've never seen any confirmation of their submission.
 
From TsAGI's Tekhnicheskaya Informatsiya 2/1984;


I think those ATF drawings are for Grumman.
 

Attachments

  • Untitled.png
    Untitled.png
    298.6 KB · Views: 1,498
Hi,


here is a Grumman ATF two swing-wing concepts.


http://arc.aiaa.org/doi/abs/10.2514/3.45328?journalCode=ja
 

Attachments

  • 1.png
    1.png
    27.3 KB · Views: 1,274
Larger image of the photo posted by Triton on pg 5 of this thread.
 

Attachments

  • VSTOL.jpg
    VSTOL.jpg
    451.2 KB · Views: 739
Hi,

I have found the following paper that seems related to this topic:

" Future Tactical Fighter Requirements: A Propulsion Technology Update "

By Lind and Ervolina

abstract

This paper examines the potential roles that are emerging from current studies of future U.S. Air Force tactical fighters and analyzes their impact on the propulsion system requirements. It provides an updated review of the leading propulsion technology concepts that are the candidates in meeting such critical design challenges as supersonic cruise, stealth, STOL, as well as high maneuvering capability with a cost-efficient weapon system.

Here is the link:

http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2280247

I also attach a 3 pages extract with some artwork and the timeline of Grumman studies

Does anybody have information of the stealth version with a dorsal intakes (beside the artwork)?

best

F_T
 

Attachments

  • Extract pages from V01AT01A046-79-GT-46.pdf
    452.6 KB · Views: 93
Great find my dear Sundog.
 

Attachments

  • 8.png
    8.png
    101.4 KB · Views: 298
  • 7.png
    7.png
    104.2 KB · Views: 267
  • 6.png
    6.png
    105.3 KB · Views: 269
  • 5.png
    5.png
    262.1 KB · Views: 261
  • 4.png
    4.png
    199.9 KB · Views: 296
  • 3.png
    3.png
    127.1 KB · Views: 331
  • 2.png
    2.png
    248.8 KB · Views: 328
  • 1.png
    1.png
    126.8 KB · Views: 295
And;
 

Attachments

  • 9.png
    9.png
    255.9 KB · Views: 300
  • 10.png
    10.png
    121.2 KB · Views: 337
  • 11.png
    11.png
    135.3 KB · Views: 354

Similar threads

Back
Top Bottom