IXPE (Imaging X-ray Polarimetry Explorer)

Flyaway

ACCESS: USAP
Senior Member
Joined
21 January 2015
Messages
10,711
Reaction score
12,388
NASA selected IXPE as a Small Explorer mission in 2017. IXPE is a collaboration between NASA and the Italian Space Agency, led by principal investigator Martin Weisskopf at NASA's Marshall Space Flight Center in Huntsville, Alabama. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations with support from the University of Colorado at Boulder. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the Explorers Program for the agency's Science Mission Directorate in Washington.

 
December 09, 2021
RELEASE 21-168

NASA Launches New Mission to Explore Universe’s Most Dramatic Objects

NASA’s Imaging X-ray Polarimetry Explorer (IXPE) mission launched at 1 a.m. EST Thursday on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida.

A joint effort with the Italian Space Agency, the IXPE observatory is NASA’s first mission dedicated to measuring the polarization of X-rays from the most extreme and mysterious objects in the universe – supernova remnants, supermassive black holes, and dozens of other high-energy objects.

“IXPE represents another extraordinary first,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “Together with our partners in Italy and around the world, we’ve added a new space observatory to our fleet that will shape our understanding of the universe for years to come. Each NASA spacecraft is carefully chosen to target brand new observations enabling new science, and IXPE is going to show us the violent universe around us – such as exploding stars and the black holes at the center of galaxies – in ways we’ve never been able to see it.”

The rocket performed as expected, with spacecraft separation taking place 33 minutes into flight. Approximately one minute later, the spacecraft unfurled its solar arrays. IXPE entered its orbit around Earth’s equator at an altitude of approximately 372 miles (600 kilometers). About 40 minutes after launch, mission operators received the first spacecraft telemetry data.

“It is an indescribable feeling to see something you’ve worked on for decades become real and launch into space,” said Martin Weisskopf, IXPE’s principal investigator at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Weisskopf came up with the idea for the spacecraft and has conducted seminal experiments in X-ray astronomy since the 1970s. “This is just the beginning for IXPE. We have much work ahead. But tonight, we celebrate!”

IXPE carries three state-of-the-art space telescopes with special polarization-sensitive detectors. Polarization is a property of light that holds clues to the environment from which the light originates. The new mission builds on and complements the scientific discoveries of other telescopes, including the Chandra X-ray Observatory, NASA’s flagship X-ray telescope. First light operations are scheduled to begin in January.

NASA Marshall manages the IXPE mission for the agency’s Science Mission Directorate as a project of the NASA’s Explorers Program. IXPE is an international collaboration between NASA, the Italian Space Agency, along with partners and providers in 12 other countries. Marshall built the three X-ray telescopes. The Italian Space Agency contributed IXPE’s polarization detectors. Ball Aerospace in Broomfield, Colorado, provided the spacecraft and manages spacecraft operations at the University of Colorado Boulder’s Laboratory for Atmospheric and Space Physics. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the Explorers Program.

For more information about the IXPE mission, visit:

 
NASA’s newest X-ray observatory – the Imaging X-ray Polarimetry Explorer, or IXPE – extended its boom successfully Dec. 15, giving IXPE the ability to see high-energy X-rays. The mission, which launched on Dec. 9, is one step closer to studying some of the most energetic and mysterious places in the universe in a new way.
 
IXPE Checks Out X-rays from Extreme Objects

Jennifer Harbaugh Posted on March 22, 2022

NASA’s Imaging X-ray Polarimetry Explorer (IXPE) mission, a joint effort with the Italian Space Agency, has returned data that no other spacecraft has obtained before from a few extreme cosmic objects.

Launched in December 2021, IXPE has detected polarized X-rays from three of its first six targets. Polarized X-rays carry unique details about where the light comes from and what it passes through. By combining these details with measurements of X-rays’ energy and how they change over time, we get a fuller picture of an object and how it works.

Prior to IXPE, the only cosmic object with polarized X-ray measurements was the Crab Nebula, the wreckage of a massive, exploded star whose light swept past Earth nearly 1,000 years ago. In these new observations, IXPE has confirmed the previous Crab Nebula measurements and detected X-ray polarization from a neutron star and a magnetar. A magnetar is a highly magnetic neutron star, a dense object left in the wake of a stellar explosion.

Scientists are now analyzing these preliminary data to better understand what they mean and how they fit in with other observations of these objects.

“Now in its third month of science operations, IXPE is performing as anticipated and is measuring the X-ray polarization of cosmic sources in the high-energy universe,” said Steve O’Dell, IXPE’s project scientist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We are excited to see these new results, about a half-century after the pioneering work of IXPE’s principal investigator Martin Weisskopf and look forward to using this new tool to understand better the workings of neutron stars, black holes, and more.”

Weisskopf was part of a team from Columbia University that first detected polarized X-rays from the Crab Nebula in 1971 using a sounding rocket experiment. About five years later, in 1976 and 1977, the Columbia team used NASA’s eighth Orbiting Solar Observatory (OSO-8) to confirm that X-rays from the Crab Nebula are polarized by a degree of almost 20 percent. IXPE measures the polarization of X-rays with higher precision, but its preliminary results agree with observations from OSO-8 and more recent measurements taken by a small satellite called PolarLight.

Another object IXPE has looked at recently is the magnetar 4U 0142+61 in the constellation Cassiopeia. The third object that IXPE detected polarized X-rays is the binary accreting neutron star system Hercules X-1, which consists of a low-mass star and a neutron star that is pulling material off it.

The other targets for IXPE’s first science observations were the supernova remnant Cassiopeia A and the active galaxy Centaurus A, as well as the Sagittarius A Complex at the center of the Milky Way, a region that includes the black hole Sagittarius A*. Preliminary analyses have not detected X-ray polarization from these objects so far, but more detailed analyses are underway.

IXPE’s first datasets are now publicly available through NASA’s High Energy Astrophysics Science Archive Research Center, managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

 

Similar threads

Back
Top Bottom