Register here

Recent Posts

Pages: [1] 2 3 ... 10
1
Aerospace / Re: Blue Origin and New Shephard RLV
« Last post by Michel Van on Today at 04:57:47 pm »
Blue Origin quietly
updated there New Glenn website https://www.blueorigin.com/new-glenn
and publish there New Glenn Payload Gide

to find a PDF copy look here: 
https://forum.nasaspaceflight.com/index.php?topic=41146.msg1880487#msg1880487
2
Thanks. Looks great in flight.
4
Military / Re: Russian Strategic Weapon Modernization Plans
« Last post by Flyaway on Today at 03:26:27 pm »
5
Aerospace / Re: Space Ship II, White Knight II - projects, flights, info
« Last post by Flyaway on Today at 03:20:36 pm »
NASA Armstrong States flight is Thursday:
Quote
NASA’s Flight Opportunities program enables researchers to test experiments on commercial vehicles to advance tech for the Moon and Mars. Tomorrow @virgingalactic will fly its 1st mission with NASA-supported payloads. More about what will be onboard:

https://twitter.com/NASAArmstrong/status/1072933053285097472
6
The Bar / "6th gen fighters" - question
« Last post by lastdingo on Today at 02:08:19 pm »
Hello,
I'm but a casual reader here and don't keep a close eye on new combat aviation tech.

I wrote a blog text about 6th gen fighters and would like to know if someone can point out substantial errors or huge omissions (there are plenty not so huge omissions in such a short text, of course).

blog post with illustrations here
https://defense-and-freedom.blogspot.com/2018/11/6th-generation-fighters.html
, text follows:
Quote
"6th generation" fighters

The Brits and the French have shown their mockups for 6th gen fighters.

I never understood why the Americans didn't use a delta wing without any separate tail fins (fully tailless). It's the bare bones configuration, without any stabilisers that function as reflectors.
Nor did I understand why the F-35 was built as a single engine aircraft (though is suspect it's one of the drawbacks caused by the STOVL version). Two engine aircraft have multiple advantages, including the ability to control roll with thrust vectoring. The F-35 was never realistically going into the low (cost) end, a niche that's now reserved for the Gripen (NG) in the West.

I myself think a completely tailless design is the obvious choice from an aerodynamic and radar stealth point of view. Two engines and a limitation to an exportable size and price (rather a F/A-18E/F equivalent than a F-22 equivalent) seem obvious things to go for as well.

The really important things that I expect in "6th gen" combat aircraft are different, though:

(1) DIRCM, likely in dorsal and ventral position and likely retractable.
Directional infrared countermeasures (lasers) that dazzle the IR sensors of incoming short and medium range missiles are very effective given enough output power and accuracy and could ruin IR-guided missiles' probability of hit. Radar-guided missiles can be messed with by many means, but smart IR-guided missiles are very difficult to defeat, as they reject decoys quite well and can even re-engage after missing.
The upper (dorsal) DIRCM 'turret' may also serve as satellite communication emitter, and both DIRCM turrets may serve as laser communication emitters for datalinks between friendly aircraft. The DIRCM may even be used as first choice IFF (identification friend or foe) interrogator (with normal radio interrogation as backup if there's no positive reply).
The lower (ventral) DIRCM 'turret' might be used to sweep the ground in search of skyward-looking optics (detecting them by characteristic reflections), which might make sense if the approximate origin of hostile surface-to-air missiles is known. The ventral DIRCM might also double as laser target designator. Overall, compact DIRCM in (strike) fighters may be one of the two new big things in air warfare.

(2) Rear-looking smartly devised AESA radar
'Stealth' aircraft, ground-based standoff jammers, long range SAMs and long-range air-to-air missiles make the life of AEW&C aircraft such as the famous AWACS miserable and short in wartime. Our combat aircraft would not be able to lean much on AEW support, and certainly not when over hostile ground.
Fighters should thus better have a good all-round situational awareness without AEW support. Passive sensors such as DAS are limited in effective range due to their resolution, and datalinking to enable multiple aircraft to join their radar data is very imperfect. You'd still need to have some allied fighter to look to the rear, and that quite impractical much of the time, particularly on strike missions over hostile ground.

The simple technical answer is to have 360° radar field of view with onboard radars. This sounds extremely expensive because high performance AESA radars such as APG-77 have only a field of view of about 110...120° because the antenna is fixed. That's too primitive. An angled AESA antenna (say, angled by 40°) that can be rotated 360° can turn a 100° field of view AESA antenna into a 40°+100°+40°=180° field of view AESA antenna (just not all 180° in a fraction of a second).* It's also possible to combine typical 1980's mechanical antenna steering with active electronic steering as for the European CAPTOR-E radar antenna. The latter approach fits better to non-rotation-symmetric radomes and antennas (those with far from circular shape)

Such a hemispherical field of view is half of a spherical field of view, so you can achieve the latter by adding a second (tail) radar. That's why having two engines (thus having space for an antenna radome behind and in between the nozzles) makes even more sense than we're used to.

Such a pair of radars with lots of quite automated modes (including jamming in their frequency ranges) would address many tactical challenges. The rear radar wouldn't even need to be as big as the front antenna; a quarter of the antenna modules (and thus sectional area) yields about a third of the range. That should be enough for most purposes.

Such 360° RF coverage could double as quite directional RF datalink emitters and receivers. It could also detect incoming low signature missiles in time for ECM or DIRCM efforts.

An important purpose of a rear radar would be the tracking of already detected aircraft (which requires somewhat less power than detecting). The rear radar could on its own track a target that a missile has been launched at, upload target info updates to the missile - all while the fighter itself is running away at supersonic speed.

The disconcerting thing is that the Russians thought of ventral and dorsal DIRCM in their Su-57, and were pioneers regarding modern (strike) fighters with tail radar in the Su-34/-35 series. The Su-57 features a tail radar as well.

Another disconcerting thing is that the Franco-German concept for a new fighter shows off neither DIRCM nor a tail radar in its admittedly very basic published model:

Avionics have been huge drivers of combat capabilities in modern combat aircraft, and also huge drivers of their price.** I suppose it's important to reserve the volume, power supply capacity, cooling (or heat sink) capacity and surfaces for key avionics in future combat aircraft. An aircraft without such reserves could be uncompetitive by the time it becomes operational, quite as non-'stealth' aircraft cannot really be upgraded into 'stealth' aircraft.

Though there is one thing to remember; no matter how sophisticated fighter avionics become, such fighters will be irrelevant against small near-ground drones. A post-2025 high end "air war" might be de facto split into a mixed on-ground and near-ground drone war, conventional air war, ballistic missiles (defence) and and space war. We shouldn't focus resources on the conventional air war domain that we got used to.

(...)

*: This is an analogy to the smart use of rotating AESA antennas on modern warships. Some warships use a single AESA antenna or a two-sided rotating AESA antenna high up instead of using much bigger, heavier, larger and more expensive fixed AESA antennas. That's more economical and due to the higher vantage point it even pushes the radio horizon farther out despite lesser power.
**: Turbofans are obscenely expensive as well.


I understand another idea for "6th gen" is a tailless design for maximum RF stealth for longer wavelengths than just x-band. "two radars for situational awareness" would go against the "maximum stealth" approach, of course. I just think that "maximum stealth" in a fighter is the equivalent of "tightest turn radius" for a WW2 fighter (pre-1942 Italians, Japanese); too defensive, not enough intent on lethality.
7
Aerospace / Re: SpaceX (general discussion)
« Last post by Flyaway on Today at 02:03:51 pm »
SpaceX’s next Falcon Heavy two-thirds done as side booster #2 leaves factory

Quote
First posted to a SpaceX-focused Facebook group by member Eric Schmidt, Falcon Heavy Flight 2’s second side booster (of two) was spotted eastbound in Arizona on December 3rd, partway through a journey from SpaceX’s Hawthorne, CA factory to its McGregor, TX testing facilities.

This is the second (known) Falcon Heavy-related booster spotted in less than a month and an incontrovertible sign that the company’s second-ever Falcon Heavy launch is perhaps just a handful of months away, with both side boosters now likely to be present in Florida by January 2019 barring unforeseen developments.
8
Aerospace / Re: Turkish Indigenous Helicopter Program
« Last post by stimpy75 on Today at 01:47:06 pm »
the last one for today
9
Postwar Aircraft Projects / Re: Dassault Rafale Projects
« Last post by paralay on Today at 12:49:14 pm »
My drawing was copied from the "TsAGI Technical Information" magazine in 1986–88
Pages: [1] 2 3 ... 10