Triton

Donald McKelvy
Senior Member
Joined
14 August 2009
Messages
9,707
Reaction score
2,021
Website
deeptowild.blogspot.com
"Northrop Grumman Awarded Contract to Develop Miniaturized Inertial Navigation System for DARPA"
PR Newswire
Northrop Grumman Corporation June 5, 2014 8:30 AM

Source:
http://finance.yahoo.com/news/northrop-grumman-awarded-contract-develop-123000677.html

WOODLAND HILLS, Calif., June 5, 2014 /PRNewswire/ -- Northrop Grumman Corporation (NOC) has been awarded a contract from the U.S. Army Aviation and Missile Research Development and Engineering Center to develop a miniaturized navigation grade inertial system for the Defense Advanced Research Projects Agency (DARPA).

DARPA's Chip-Scale Combinatorial Atomic Navigator (C-SCAN) program aims to integrate micro-electro-mechanical system (MEMS) and atomic inertial guidance technologies into a single inertial measurement unit, providing stable long-term performance with fast start-up time. The integrated navigation system seeks to combine inertial sensors with dissimilar but complementary physics properties, providing an affordable solution in GPS-challenged environments.

Under the cost-plus-fixed-fee contract with an initial value of $648,000, Northrop Grumman will develop a miniaturized inertial measurement unit for the C-SCAN program by combining bulk acoustic wave MEMS gyro and nuclear magnetic resonance (NMR) gyro technologies. This includes maturing the NMR gyro, shrinking the package's current size and developing a new precision optical accelerometer. The contract has a potential value of $13.4 million with multiple options after the initial 12‑month base contract.

"This microsystem has the potential to significantly reduce the size, weight, power requirement and cost of precision navigation systems," said Charles Volk, vice president, Advanced Navigation Systems business unit, Northrop Grumman. "Additionally, the system will reduce dependence on GPS and other external signals, ensuring uncompromised navigation and guidance for warfighters."

DARPA's Microsystems Technology Office, which administers the C-SCAN effort, promotes beyond-state-of-the-art technology in the component and microsystems areas. The C-SCAN effort is part of the Micro-Technology for Positioning, Navigation and Timing program that aims to develop micro-technology for self-contained, chip-scale inertial navigation and precision guidance, eliminating dependence on GPS. Potential applications for these advanced navigation sensor chips include targeting, positioning, guidance, navigation and smart weapons.

Northrop Grumman is a leading global security company providing innovative systems, products and solutions in unmanned systems, cyber, C4ISR, and logistics and modernization to government and commercial customers worldwide. Please visit www.northropgrumman.com for more information.
 
"Get Back, Loretta: DARPA Seeks to Eliminate GPS Dependence"
by Alan Cameron

July 24, 2013

Source:
http://gpsworld.com/get-back-loretta-darpa-seek-to-eliminate-gps-dependence/

Call it irony, poetic justice, or just the nature of the beast. The same impulse that led to the invention of GPS now has engendered a drive to beget non-GPS.

In the 1970s, the U.S. military began putting together a program “to drop five bombs in the same hole.” The program office, to the wall of which that mission statement was tacked, went on to develop the first satellite navigation positioning system: GPS. In 2012, the U.S. Defense Advanced Research Projects Agency (DARPA) declared that this system no longer sufficed for reliable delivery of precision munitions under every circumstance.

“More than 98 percent of the missiles currently in the U.S. arsenal have mission durations of less than 20 minutes, and today, almost all of these missions are critically dependent on GPS for achieving the required level of delivery accuracy,” a communiqué stated.

Because of vulnerability to jamming, spoofing, and other intentional or unintentional modifications of position, orientation, and time information, the agency has put forth a new goal “to completely eliminate dependence on GPS or any other external signals during the mission and rely solely on self-contained solutions such as inertial navigation,” which is immune to such extrinsic actors.

The Chip-Scale Combinatorial Atomic Navigator program has made 10 exploratory grants to investigate and develop this concept, to large corporations, a small start-up, national labs, and academic groups. Only one has been announced, by contracting agent Wright Patterson Air Force Base, to AOSense. DARPA wishes to emphasize that this is a sample of what is happening in C-SCAN, and should not been viewed by readers as the only technical approach paving the way.

The company, located in Sunnyvale, California, has gotten busy building an experimental navigation-system-on-a-chip that combines traditional, solid-state, and atomic inertial guidance technology. Their goal: create a sensor on a chip that works reliably, without drift, over considerable distances for at least 20 minutes.

AOSense is exploring how to shrink and fabricate atomic sensors together with high-performance solid-state inertial sensors. DARPA hopes the C-SCAN program will lead to a breed of inertial microsystems, with a wider range of operating conditions and greater immunity to the environment, reduced start-up time, increased sensitivity, and improved bias and scale factor stability. Oh, and not cost too awful much per piece.

Another project at Northrop Grumman seeks to develop a micro-gyro for personal and unmanned vehicle navigation.

Despite impressive micro-PNT work to date, current mechanisms remain complex, bulky, power-hungry — and pricey. They have limited resolution and poor long-term stability. Alternative forms give excellent resolution and bias stability, but are limited in bandwidth and generally do not allow high-frequency measurements.

Make no mistake, however. Yankee (and whatever other forms that can be brought to bear) ingenuity will, eventually, win the day. Where then will GNSS find itself?
 

Similar threads

Back
Top Bottom