

SCOPE OF PRESENTATION

+ BACKGROUND LEADING TO F-16.

+ WHY THE F-16 LOOKS LIKE IT DOES.

EVENTS LEADING TO F-16

Chronology Of F-16 Development

YF-16 PROTOTYPE PROGRAM

- TWO YF-16 PROTOTYPES FOR TECHNOLOGY DEMONSTRATION.
 - Explore Potential Of Integrated Advanced Technologies
 - Emphasis on Airframe Technologies
 - Define Operational Utility and Suitability of Concept
 - 30 Percent of Test Flights
- FLEW OVER 350 FLIGHTS TOTALING MORE THAN 400 HOURS IN 10 MONTH PERIOD
- TEST PILOTS: (2) Contractor

 - (2) Air Force Flight Test Center (1) Air Force Operational Test & Evaluation Center

FORCE SIZE POLICY CHANGED

THEN: (1950-60-70)

Fixed Force Size (Numbers) Cost Secondary

NOW:

Fixed Budget (Dollars) \Diamond Cost Sensitive

Unit Flyaway Cost Growth

• 1975 DOLLARS • 500 AIRCRAFT

Cost Per Pound Growth

• 1975 DOLLARS • 500 AIRCRAFT

U.S. FIGHTERS LOST COMBAT EFFECTIVENESS

Result: For Every F-4 They Shot Down, We Shot Down Only 1.6 Mig-21s

LIGHTWEIGHT FIGHTER CONTROVERSY

- Advocates ("Fighter Mafia")
 - TOO MUCH SOPHISTICATION/HIGHTECHNOLOGY:
 - + Degrades Useful Capabilities and Reliability
 - + Costs Too Much
 - FAVORED QUANTITY (Numbers) OVER QUALITY
- Detractors
 - SOPHISTICATION/HIGH TECHNOLOGY NEEDED TO COUNTER NUMERICAL ADVANTAGE OF THREAT
 - FAVORED QUALITY OVER QUANTITY (Numbers)

LIGHTWEIGHT FIGHTER ISSUES

• SIZE: "TOO SMALL"

- + "Can't Carry Anything, Can't GO Anywhere."
- + "Good Only For Hotdog Air Shows At County Fairs On Sunny Summer Afternoons."
- + Bitter, Caustic Attacks....Much Acrimony.

• <u>1 vs. 2 ENGINES:</u>

- + Highly Emotional And Biased.
- + Safety/Survival Perception.

AIR COMBAT ANALYSIS

Initial "Fighter Mafia" Effort: Understand The Problem

- + Define and Analyze Every Element Of Air Combat.
- + What Are Key Elements and Their Sensitivities?
- + Which Have Most Leverage?
- + What Are Interactions?
- + What Parameters Best Define Air Combat Capabilities?
- + What Are Critical Pilot-Airframe Interfaces?

LIGHTWEIGHT FIGHTER BASIS

- KEY AIR COMBAT PARAMETERS....
 - (1) The Pilot Must First Observe and Interpret the Situation.
 - (2) Become Oriented to the Condition and Intensity of the Situation.
 - (3) Make a *Decision* on What Response to Make.
 - (4) Put That Response into <u>Action</u>.

OBSERVATION-ORIENTATION-DECISION-ACTION

Accomplish In Shortest Possible Time

"FAST TRANSIENTS" CONCEPT

"FAST TRANSIENTS" CONCEPT

- OPERATE AT A FASTER TEMPO THAN ADVERSARY
 - + To Generate Rapidly Changing Conditions...
 - + To *Inhibit* His Capacity...
 - + To Adapt or React to Those Changes...
 - + And Suppress or Distort His Awareness
- INDUCE A "HODGE PODGE" OF <u>CONFUSION AND DISORDER</u>
 - + To Cause Him to *Over, or Under React...*
 - + To Conditions or Activities That Appear To Be <u>Uncertain,</u> <u>Ambiguous or Incomprehensible</u>

Maintain High Energy State and Rate of Change Exceptional Situation Awareness

MANEUVERABILITY SUMMARY

"FAST TRANSIENTS"

"FAST" IN TERMS OF TIME, NOT NOT NECESSARILY SPEED.

- HIGH ENERGY STATE and RATE OF CHANGE
 AGILITY.
 - Low Drag at All Flight Conditions.
 - High Thrust.
 - Responsive Control.

WHAT DOES THIS MEAN?

OLD PARAMETERS OBSOLETE

SUSTAINED TURN RATE

W/S Dominant

• MAXIMUM SPEED (Vmax)

T/W Dominant

RELEVANT PARAMETERS

- INSTANTANEOUS TURN RATE
 - Lift
 - Pitch Rate
 - Moments of Inertia
 Mass Ratios
- Control Inputs
- Roll/Yaw Rate
- Damping

- ACCELERATION
 - Excess Thrust

SIZE and WEIGHT DOMINATE

SIZE and WEIGHT HAVE INTERACTIVE BENEFITS

IMPACT OF SMALL SIZE

	<	F-4E	F-16A	ž.
WETTED AREA		2063	1405	68%
CRUISE	Drag (lb) (lb/sq ft A _W)	5023 (2.43)	2514 (1.13)	50% (47%)
CHOISE	Fuel Flow (lb/hr)	5488	1588	29%
	Drag (lb)	74,446	14,676	20%
COMBAT	Specific Energy Loss (fps)	-1243	-138	11%
5g @ M=.9/30K	Fuel Flow (lb/hr)	42,180	25,780	61%

Key Maneuver Parameters

Ps = Specific Excess Power

Aerodynamic Drag Elements CLEAN AIRPLANE

BASIC AIR-TO-AIR NEEDS

Enough:

- <u>Lift</u> to maneuver to an advantage.
- Precise, Responsive Contol to manage the lift.
- Strength to preserve that lift.
- "G" Tolerance to be effective at that lift.
- Energy to sustain the advantage.
- Visibility to assess that advantage.
- Plus, the sensors, displays, controls, and weapons to convert the advantage into a "win."

LIFT GENERATION ELEMENTS...

- WING PLANFORM:
 - Area
 - Aspect Ratio (Span), Sweep, Taper Ratio Airfoil Section: Camber and Thickness
- BODY:

• VORTEX INDUCED:

VARIABLE WING CAMBER:

LIFTING HORIZONTAL TAIL:

KEY MANEUVERABILITY PARAMETERS

- WING LOADING (W/S) AND THRUST LOADING (T/W) USED ONLY AS NOTIONAL MEASURES OF MANEUVERABILITY.
- •THESE PARAMETERS WERE ANALYZED TO DEFINE <u>MAXIMUM</u> <u>USABLE MANEUVERABILITY</u>.....
 - Longitudinal instability or uncontrolled oscillations.
 - Lateral/directional divergence.
 - Spin divergence.
 - Buffet on-set.
 - Roll/pitch rate & time-to-bank/pitch.
 - Stick forces.
 - Engine stall margin/pressure recovery at angle-of-attack.
 - Engine spool-up time.

PRECISE, RESPONSIVE CONTROL...

Function of:

- Pitch Rate
- Roll/Yaw Rate
- Moments Of Inertia
- Mass Ratio
- Damping
- Control Inputs

Resulting form:

 Key Agiliy Factor: e.g. Time-to bank parameter more important than roll rate.

ADVANCED TECHNOLOGIES APPLIED

ADVANCED TECHNOLOGY BENEFITS

- ADVANCED AIRFRAME TECHNOLOGIES AS APPLIED TO YF-16 RESULTED IN:
 - Higher Maximum Usable Maneuverability
 - Lower Drag Higher Specific Range
 - Higher Fuel Fraction
 - Lower Weight More Affordable Cost
- INTEGRATION REDUCED THE MISSION DESIGN GROSS WEIGHT BY 7280 LBS. Not Including 1 vs. 2 Engine Weight Difference
- YF-16 AIRFRAME TECHNOLOGIES HAVE SUSTAINED CONTINUED IMPROVEMENTS AND MOST ARE BEING DUPLICATED IN TODAY'S FIGHTERS

CONFIGURATION ANALYSIS

- PRELIMINARY CONFIGURATIOON DEFINITION
 - EXPERIMENTAL DATA (WIND TUNNEL) BASED.
 78 COMBINATIONS OF VARIABLES.

LWF Force Models Tested

• 78 Significant Variations

• M=.2-2.2 • α = 28° • β = 12°

	Configurations Tested	WINGS ALE CAMBER CAMBER AIRFOIL (S)			INLETS SIDE BOTTOM			VERTICA	AL TAILS SINGLE	VORTEX LIFT (Forebody Strakes)	WIND TUNNEL Test hours .	
_ a_	785	40°	V	CAMBEIL	64A205 & 64A403.5	0.01	VO			~	V	48
î	4	35°	V		64004.9 & 64043.5		VO			V		20
Coven Foret	786 TWIN TAIL 785	40°		√	64A205 & 64A403.5		v o		√		V -	48
	401F-0	35°		√	4% BICONVEX		V 0		√		11/2	187
	10 H	40°	V		64A204		V , O		√ ,		V STRAKES	107
	401F-2	40°		√	64A204		$\sqrt{\circ}$	√ ♡	√	√	V	91
		35°		√	64004.9 & 64043.5			•	√			31
aping	401F-3 FERRI INLET	40°		√	64A204			√ ♡	√			20
	401F-4 HIGH WING	40°		√	64A204			√ ♡	√	✓	STRAKES	39
ody Sh	401FS	40°		√	64A204	√ □ □			√			29
Forebo	401F-5	40°		√	64A204			√ ♡	(3) HORIZ TAIL POSITIONS	*	V==	130
Wing/Forebody Shaping	401F-5A	40°		√	64A204			√ ♡		√	V/1/2	30
. 4	401F-10	40°		√	64A204		√ ○		4	√	V -	30
	401F-10A	40°		√	64A204		√ ○			√	V	32
	401F-16	40°		√	64A204			V 0		210	1-	442
		45°	V -	V	CONICAL CAMBER 64A(X)5.9/64A203			√ ♡		(2)	' =	772
	401F-16E	40°		√	64A204			V =	_	21	1-	126
	Wing Moved Forward 14 inches											

COMBAT RULES IMPACT ON WING GEOMETRY

1 Mach 1.2 Turns (30,000 ft.)
2 Mach 0.9 Turns (30,000 ft.)
3 Acceleration (M = .8 - 1.6 at 30,000 ft.)
4 Maximum "g" at M = .8 at 40,000 ft.

- Variable Sweep.....Fixed Airfoil Camber Variable Planform (F-111).
- Suggests Variable Geometry Wing.
 - Variable Camber.....Fixed Planform Variable Airfoil.

SIZE & ENGINE BASIS

DEFINE TRADE-OFFS OF WEIGHT AND PERFORMANCE

- BEST COMBAT PERFORMANCE
- LOWEST MISSION WEIGHT

WING GEOMETRY WING LOADING-ASPECT RATIO TRADE BEST BALANCE W/S=45 RATE (DEG/SEC) OF WING LOADING TURN RATE VS. 1000 ASPECT RATIO 750 ACCELERATION AR =6.0 TRA DE OWEST WEIGHT ACCELERATION TIME - SEC

WING GEOMETRY DEFINITION

Best Balance of Turn Rate and Acceleration

LIFT & DRAG FUNCTION INCREASE LIFT, LOWER DRAG

Blended Body Superior to Conventional Body at High Lift

Controlled Vortex Lift

HIGHER LIFT PER UNIT OF EXPOSED WING AREA

- Effective W/S = 52 at M = .9 and 41 at M = 1.2 (Geom. = 60)
- Equivalent Wing would Weigh +490 lbs

GREATLY IMPROVED DIRECTIONAL STABILITY

Statically Stable to High Angles-of-Attack

REDUCES TRIM DRAG

Straightens Pitching Moment Curve

Strake Directional Stability Improvement

Vortex Lift/Strake Improvement

Fly-By-Wire Flight Control All-Electronic System (Quad Redundant) Servo-Actuators FLIGHT COMMANDS **PILOT** CONTROL **INPUTS** COMPUTER Monitor Inputs **SENSORS** Auto Limit/Corrections Attitude Compute Commands Rates Velocity Altitude Accelerometer Pkq. Temp. Side-Stick Controller Air Data Rate Gyros (3) Computer Air Data Flight Control Computer

- Better Kinematics (Reduced Lags & Overshoots) Provide:
 - Greatly Improved/Expanded Flying Qualities

Probe

- Significantly Improved Response & Precision for High Tracking Accuracy

AOA Transmitters

- Computer Commands Provide Same Response for Same Stick Force (Input)
- Stall/Spin Protection Automatically Maintains Attitude Within Useful Limits
- Redundancy & Freedom of Routing Provide Improved Reliability (2½ Times)
 & Increased Survivability

Relaxed Static Stability

- New Approach to Configuration Design
 √ More Freedom to Achieve Maximum Balance of Performance and Flying Qualities
 √ Smaller Control Surfaces
- More Responsive Maneuvering Twice Conventional Configurations
- Lower Mission Weight: 500 lb

DIRECTIONAL CONTROL FUNCTION

VERTICAL TAIL

- COMPOSITE SKINS-
 - · Rigidity-High Effectiveness
- TAIL SIZED FOR RUDDER POWER

VENTRALS

- SPIN RESISTANCE
- DIRECTIONAL STABILITY AT HIGH SPEED AOA

VERTICAL TAIL DEFINITION

Single Tail Provides Better Directional Stability

HORIZONTAL TAIL DEFINITION

AUTOMATIC VARIABLE CAMBER-MANEUVERING FLAPS

- INCREASED DIRECTIONAL STABILITY AND REDUCED DRAG/INCREASED LIFT AT HIGH ANGLES OF ATTACK ($\approx 12^{0}$)
- BETTER BALANCE BETWEEN TURN RATE AND ACCELERATION (LESS WING AREA, THINNER WING)

STRENGTH-WEIGHT RELATIONSHIP

- LIGHTWEIGHT NOT ACHIEVED WITH USE OF EXOTIC MATERIALS....OR BY REDUCING STRUCTURAL STRENGTH OR SERVICE LIFE.
 - Strength = 9g. at Full internal Fuel
 - Service Life = 8000 Hours

- STRENGTH IS CONSISTENT WITH AERODYNAMIC AND PILOT LIMITS.
- CONVENTIONAL ALUMINUM STRUCTURE....LIMITED USE OF COMPOSITES (Control Surface Stiffness)

PROPULSION ISSUES

THRUST LEVEL:

One TurboFan

Two TurboJet

• INLET AIR FLOW CAPTURE AREA & PRESSURE RECOVERY:

Inlet Location

Inlet Face

FOD Ingestion

ENGINE SELECTION

Single P&WA F100

Twin GE YJ101 (Now F404)

- P&WA F100 TURBOFAN SELECTED
 - LOWER WEIGHT (Combined Engine & Fuel Weight for 500 n.mi. Radius)

OR

- 7882 lbs. vs. 10,234 lbs. (Dry Weight 1024 lbs. Lower)
- LESS FUEL (All Conditions)
 - 25% Less Cruise Fuel
 - 14% Less Combat Fuel
 - 45% Less Reserve Fuel
- HIGHER ENGINE T/W & HIGHER TOTAL THRUST AT Vmax
- MORE INLET LOCATION OPTIONS
- LOWER BASE DRAG

Twin-Engine Impact on Mission Radius

Constant TOGW

- Airframe Drag
- Engine Weight
- Engine Fuel Flow

MISSION RADIUS

INLET / AIRFRAME INTEGRATION

Function: STALL-FREE, LOW DISTORTION, HIGH PRESSURE RECOVERY

Inlet Location Determination

Single vs. Dual Inlet Drag Equal Total Capture Area - 732 sq. in.

M = .80	C _{D min}	0187	.0201
	L/D Cruise		10.39
	C _D at Cruise	0318	
	C _D at Maneuver (C _L = .8) _	1330	.1605
M = 1.2	C _{D min} C _{D at Maneuver} (C _L = .5)	.0444	0470
	C _D at Maneuver (C _L = .5)	.0873	.0916

THRUST FUNCTION INLET GEOMETRY DEFINITION

INLET GEOMETRY SELECTED FROM WIND TUNNEL TESTS

 Analytical Procedures Not Accurate Enough To Estimate Pressure Recovery Or Drag

FOD INGESTION MINIMIZED

FOD ANALYSIS:

Suction Effects: B-707, B-737 (Inlets 20" Above Ground)

Negligible Effect

Nose Gear Effect: F-100, F-111, F-4, F-15, F-5, AT-37, A-7: 2-Engine Aircraft With Side Inlets Many Times Worse Than 1-Engine Aircraft.

One vs. Two-Engine Safety Comparison

Data Source: U.S. Air Force Accident Bulletins

Air Defense Mission

- Same Mission
- Same Time Frame

F-102A - 1 P&W J57 Engine

F-101B - 2 P&W J57 Engines

Conclusion

Single Engine and Twin Engine Fighters Have Similar Accident Rates for Same Mission Risk

PILOT-VEHICLE FUNCTIONS FOR MAXIMUM COMBAT CAPABILITY

- PILOT NOT LIMITED BY VEHICLE
- VEHICLE AN EXTENSION OF PILOT'S CAPABILITIES

PILOT-VEHICLE INTERFACE

Function: HIGH "g" TOLERANCE, 360° SITUATION AWARENESS, PRECISE CONTROL INPUTS

HEAD-UP, HANDS-ON CONTROL

Combat Critical Functions Located on Throttle & Flight Controller

HEADS-UP DISPLAY

- FORCE/LIMITED DISPLACEMENT SIDE-STICK CONTROLLER
 - ✔ More Precise Inputs
 - ✔ Minimum Inadvertent Inputs & Feed-Backs

Side-Stick Controller

Unique Test Pilot Approach

- 1 TEST PILOTS ASSIGNED (Full Time) AT PROGRAM START
 - Contractor
 - USAF Flight Test Center (AFFTC)
 - TAC
- 2 TEST PILOTS SELECTED COCKPIT CONFIGURATION
 - 30° Seat Back Angle
 - Side-Stick Controller
 - Force Stick
 - One-Piece Canopy (No Fixed Windshield)
- 3 GD PILOTS WROTE FLIGHT HANDBOOK
- 4 PILOTS SHARED ALL THREE TEST PHASES
 - AFFTC Pilot Flew 3rd Flight
 - TAC Pilot Flew 12th Flight

ALTERNATE CONFIGURATION APPROACHES

• EVALUATED BY INDEPENDENT "RED TEAM"

LWF PROTOTYPE PROGRAM LESSONS

- DIFFERENT, AND BETTER, AIRPLANE SELECTED
- YF-17 WOULD HAVE 'WON' PAPER COMPETITION
 - "Bigger Airplane has more Capability" Syndrome
 - Twin-Engines
 - Low Cost Reputation
 - Lower Technical Risk (Less Innovation)
- HIGHER TECHNOLOGY FIGHTER FOR INVENTORY
 - Innovative Aspect Resisted by Operational People
 - Enthusiastically Accepted After Dramatically Demonstrated
- SOLID BASE FOR SUBSEQUENT FULL SCALE DEVELOPMENT
 - Unqualified Technical Success
 - Emphasis on Operational Systems and Support Elements
- REDUCED DEVELOPMENT PROGRAM
 - 8 A/C Vs. 20 A/C (F-15)
 - 2100 Flight Test Hours Vs. 5000 (F-15)
 - \$629M Vs \$2.2B (F-15)

USAF SELECTION RATIONALE

- YF-16 DEMONSTRATED...
 - + Better agility
 - + Better Acceleration
 - + Higher Turn Rate
 - + More Endurance

- + Better Tolerance to High "g"
- + Better Visibility
- + Better Deceleration

- YF-16 Costs More Believable and Lower By 6-7% With Lower Development and Life-Cycle Costs
- YF-16 Considered To Be Closer To Production Design

SUMMARY....

- THE YF-16 WAS AN UNQUALIFIED SUCCESS.
 - Performed Like No Other Fighter Has Ever Performed.
 Advanced Airframe Technologies and Design Innovations Were Carefully Selected and Well Integrated to Produce Very High Performance at an Affordable Cost.
 - So Advanced As To Be Enduring For Continuous Improvement.
 - Being Duplicated In Today's Fighters.
 - More Advanced Airplane Resulted Than From Normal Approach.
- YF-16 WAS FIRST FIGHTER TO TRULY INTEGRATE THE PILOT AND THE AIRFRAME (Man-Machine Interface).